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In this article we propose a new symmetric version of the interior penalty discontinuous
Galerkin finite element method for the numerical approximation of the compressible
Navier–Stokes equations. Here, particular emphasis is devoted to the construction of an
optimal numerical method for the evaluation of certain target functionals of practical inter-
est, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in
mind, the key ingredients in the construction of the method include: (i) an adjoint consis-
tent imposition of the boundary conditions; (ii) an adjoint consistent reformulation of the
underlying target functional of practical interest; (iii) design of appropriate interior penalty
stabilization terms. Numerical experiments presented within this article clearly indicate
the optimality of the proposed method when the error is measured in terms of both the
L2-norm, as well as for certain target functionals. Computational comparisons with other
discontinuous Galerkin schemes proposed in the literature, including the second scheme
of Bassi and Rebay, cf. [F. Bassi, S. Rebay, GMRES discontinuous Galerkin solution of the
compressible Navier–Stokes equations, in: B. Cockburn, G. Karniadakis, C.-W. Shu (Eds.),
Discontinuous Galerkin Methods, Lecture Notes in Comput. Sci. Engrg., vol. 11, Springer,
Berlin, 2000, pp. 197–208; F. Bassi, S. Rebay, Numerical evaluation of two discontinuous
Galerkin methods for the compressible Navier–Stokes equations, Int. J. Numer. Methods
Fluids 40 (2002) 197–207], the standard SIPG method outlined in [R. Hartmann, P. Houston,
Symmetric interior penalty DG methods for the compressible Navier–Stokes equations. I:
Method formulation, Int. J. Numer. Anal. Model. 3(1) (2006) 1–20], and an NIPG variant
of the new scheme will be undertaken.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The ever-increasing range of applications of compressible fluid dynamics is a fertile source of difficult and challenging
problems with important implications in engineering design. In recent years there has been tremendous interest in the
mathematical development and practical implementation of discontinuous Galerkin finite element methods (DGFEMs, for
short) for the discretization of compressible fluid flow problems; see, for example, [8,10,11,14,16–18,27,28,33,36], and
the references cited therein. The key advantages of these schemes are that DGFEMs provide robust and high-order accurate
approximations, particularly in transport-dominated regimes, and that they are locally conservative. Moreover, there is con-
siderable flexibility in the choice of the mesh design; indeed, DGFEMs can easily handle non-matching grids and non-uni-
form, even anisotropic, polynomial approximation degrees.
. All rights reserved.
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The construction of DGFEMs is based on employing a test and trial space comprising discontinuous piecewise polynomial
functions of a given degree. Information regarding the numerical solution is then communicated between each element
through the introduction of suitable numerical flux functions defined on the faces of each element in the mesh. We remark
that boundary conditions are typically imposed in a similar fashion. The choice of the numerical flux functions employed
then determines the stability and accuracy properties, etc., of the underlying scheme. For the discretization of transport
terms, numerical flux functions employed within the finite volume community are typically employed; in the linear setting,
most of these fluxes simply lead to a straightforward upwinding of the underlying hyperbolic partial differential operator;
see, for example, [7], and the references cited therein.

The discretization of second-order partial differential operators by the DGFEM has proved more challenging in many
ways, particularly in the context of nonlinear diffusion problems. For a recent review of many of the approaches proposed
in the literature for the discretization of linear second-order elliptic partial differential equations, we refer to [1]. In this case,
the DGFEM is usually constructed by first rewriting the underlying second-order partial differential equation as a first-order
system of equations by introducing additional auxiliary variables; the resulting system is then discretized by restricting the
test and trial functions to come from the DGFEM finite element space, together with the introduction of suitable numerical
flux functions. The resulting discretized system of equations is often referred to as the flux formulation of the DGFEM. The
flux formulation involves unknowns which approximate the solution of the original partial differential equation, together
with the approximation of the auxiliary variables. Thereby, for computational efficiency, it is usually desirable to eliminate
the auxiliary variables introduced en route to the derivation of the discretization scheme. This is typically done through the
introduction of suitable lifting operators which leads to the so-called primal formulation of the DGFEM, cf. [1]. In general, the
computation of the lifting operator present in the primal formulation of the underlying scheme requires the inversion of lo-
cal mass matrix problems on each face present in the computational mesh; see below for the definition of the second scheme
(BR2) proposed by Bassi and Rebay [12,13].

The computation of the lifting operator present within many DGFEMs is typically quite expensive; indeed, for a nonlinear
problem, around 30% of the computational effort required for the evaluation of the nonlinear residual is devoted to the com-
putation of the lifting operator. However, it is worth noting that for one prominent class of DGFEMs, referred to as the inte-
rior penalty DGFEMs, the lifting operator may be explicitly evaluated; indeed, here the lifting operator simply reduces to the
identity operator. Thus, in principle, the exploitation of the interior penalty DGFEM is particularly appealing for large scale
CFD applications. In the context of the laminar compressible Navier–Stokes equations, interior penalty DGFEMs have been
developed in our earlier articles [27,28], for example. However, as we shall see later in this article, in the context of duality-
based error estimation, the symmetric version of the interior penalty DGFEM proposed in [27] may not lead to optimal rates
of convergence as the mesh size tends to zero.

Building on the techniques outlined in our previous articles [25,27,28], the aim of this paper is to propose a new alter-
native interior penalty DGFEM for the numerical approximation of the compressible Navier–Stokes equations which leads
to computationally optimal orders of convergence when the error is computed in terms of both the L2-norm, as well as
for certain target functionals of the solution of practical interest. Error control in this latter sense is particularly important
in engineering applications; indeed, in CFD one is often concerned with calculating the lift and drag coefficients of a body
immersed into a viscous fluid whose flow is governed by the Navier–Stokes equations. The lift and drag coefficients are de-
fined as integrals, over the boundary of the body, of the viscous and pressure induced forces normal and tangential to the
flow, respectively. With this aim in mind, we note that there are essentially three key ingredients in the design of the under-
lying interior penalty DGFEM to ensure the optimality of the resulting scheme:

(1) Adjoint consistent discretization including an adjoint consistent imposition of the boundary conditions.
(2) Adjoint consistent reformulation of the underlying target functional of practical interest.
(3) Design of appropriate interior penalty stabilization terms.

The use of adjoint consistent, or at least asymptotically adjoint consistent, numerical schemes is of paramount impor-
tance for duality-based error estimation, cf. [1,23,29]. Indeed, the use of, for example, the non-symmetric interior penalty
method for the numerical approximation of Poisson’s equation leads to suboptimal orders of convergence when the error
is measured in terms of both the L2-norm, as well as for target functionals of the solution, cf. [23]. We should point out that
the use of adjoint consistent numerical fluxes within the design of DG methods is a very natural requirement which is al-
ready employed within a number of schemes proposed within the literature; see [1], for example, and the references cited
therein. In the context of target functional error estimation, it is frequently the case that the functional may be expressed in a
variety of different ways which are all equivalent on the continuous level, but may lead to quite different numerical approx-
imations under discretization. Thereby, a suitable adjoint consistent reformulation of the functional under consideration
may also be required for purposes of optimality. This was first investigated for DGFEMs in the article [22], though we remark
that this idea had been previously developed in the context of conforming finite element methods in the articles [2–4], for
example. In this context, we point out that when considering the estimation of, for example, the flux on a portion of the
boundary of a second-order elliptic partial differential equation, the adjoint consistent reformulation of the target functional
under consideration is performed in a fundamentally different manner depending on whether a DGFEM or a conforming
Galerkin finite element method is employed. Indeed, in the former case, the adjoint consistent modification of this target
functional still leads to an integral on the corresponding boundary of the computational domain. In contrast, for the case
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when a continuous Galerkin finite element approximation is employed, the boundary flux must be reformulated as a volume
integration over all the elements in the computational mesh which neighbor the boundary of interest, to ensure optimal con-
vergence of the underlying target functional as the mesh is uniformly refined. The extension of these ideas to the discontin-
uous Galerkin discretization of compressible fluid flows has also been developed in the recent articles [34,25]. Finally, in the
context of interior penalty DGFEMs, the absence of the lifting operator, although advantageous from a computational point
of view, means that the natural generalization of the scheme from the discretization of the Laplace operator to nonlinear
diffusion problems, leads to the introduction of so-called jump terms in the underlying numerical scheme which penalize
discontinuities present in the numerical solution subject to a uniform penalty term weighted appropriately by the polyno-
mial degree and the mesh size; cf. [27] for the discretization of the compressible Navier–Stokes equations and [30] for DGF-
EMs employed in the numerical approximation of second-order quasi-linear elliptic partial differential equations. However,
as we shall see later, this choice of the interior penalty parameter may not lead to optimal orders of convergence, when the
error is measured in terms of the L2-norm as well as for target functionals of the solution. Thereby, in this article we shall
propose an alternative choice which is very much inspired by the corresponding term arising in the BR2 scheme, cf. [12,13],
for example, but has the advantage of not requiring the computation of a lifting operator; we point out that a similar expres-
sion for the interior penalty parameter has also been proposed in the recent article [35]. Indeed, our numerical experiments
will demonstrate that the accuracy of the proposed interior penalty DGFEM is comparable to that of the BR2 method, yet the
evaluation of the underlying residual of the scheme is significantly computationally cheaper due to the absence of the lifting
operator.

The outline of this article is as follows. In Section 2 we introduce the two-dimensional compressible Navier–Stokes equa-
tions. Section 3 considers the construction of the new symmetric interior penalty DGFEM; here, particular attention will be
devoted to both the adjoint consistent imposition of the boundary conditions, as well as the design of appropriate penalty
terms. The adjoint consistency of the method with respective to a general target functional of practical interest will be dem-
onstrated in Section 4 using the general framework developed within the article [25]. The computational performance of the
proposed method will be studied in Section 5 on sequences of both uniformly and adaptively refined computational meshes.
Finally, in Section 6 we summarize the work presented in this paper and draw some conclusions.

2. The compressible Navier–Stokes equations

In this section we consider the two-dimensional stationary compressible Navier–Stokes equations
r � FcðuÞ �Fvðu;ruÞð Þ ¼ 0 in X; ð1Þ
where X is an open bounded domain in R2. The vector of conservative variables u and the convective fluxes FcðuÞ are de-
fined by
u ¼

q
qv1

qv2

qE

26664
37775; fc

1ðuÞ ¼

qv1

qv2
1 þ p

qv1v2

qHv1

26664
37775 and fc

2ðuÞ ¼

qv2

qv1v2

qv2
2 þ p

qHv2

26664
37775;
respectively. Furthermore, the viscous fluxes Fvðu;ruÞ ¼ ðfv
1ðu;ruÞ; fv

2ðu;ruÞÞ are defined by
fv
1ðu;ruÞ ¼

0
s11

s21

s1jvj þKTx1

26664
37775 and fv

2ðu;ruÞ ¼

0
s12

s22

s2jvj þKTx2

26664
37775:
Here, q, v ¼ ðv1; v2Þ>, p, E, and T denote the density, velocity vector, pressure, specific total energy, and temperature, respec-
tively. Moreover, K is the thermal conductivity coefficient and H is the total enthalpy defined by H ¼ Eþ p=q: The pressure
is determined by the equation of state of an ideal gas, i.e.,
p ¼ ðc� 1Þq E� 1
2

v2
� �

; ð2Þ
where c ¼ cp=cv is the ratio of specific heat capacities at constant pressure (cp) and constant volume (cv); for dry air, c ¼ 1:4.
For a Newtonian fluid, the viscous stress tensor is given by
s ¼ l rvþ ðrvÞ> � 2
3
ðr � vÞI

� �
;

where l is the dynamic viscosity coefficient; the temperature T is given by KT ¼ lc
Pr ðE� 1

2 v2Þ; where Pr ¼ 0:72 is the Prandtl
number.

Writing G to denote the homogeneity tensor, with GijðuÞ ¼ ofv
i ðu;ruÞ=ouxj

, for i; j ¼ 1;2, cf. [27], the viscous fluxes may be
written in the form fv

i ðu;ruÞ ¼ GijðuÞou=oxj, i ¼ 1;2, or more compactly, we may write Fvðu;ruÞ ¼ GðuÞru.
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Given that X � R2 is a bounded region, with boundary C, the system of conservation laws (1) must be supplemented by
appropriate boundary conditions. For simplicity of presentation, we assume that C may be decomposed as follows
C ¼ CD;sup [ CD;sub-in [ CD;sub-out [ CW;
where CD;sup, CD;sub-in, CD;sub-out, and CW are distinct subsets of C representing Dirichlet (supersonic), Dirichlet (subsonic-in-
flow), Dirichlet (subsonic-outflow), and solid wall boundaries, respectively, cf. [27]. We remark that as in [27,28], Neumann
boundary conditions may also be considered; for clarity of presentation, we neglect this case and refer to our earlier articles
for details.

Thereby, we may specify the following boundary conditions:
BðuÞ ¼ BðgDÞ on CD;sup [ CD;sub-in [ CD;sub-out;
where gD is a prescribed Dirichlet condition. Here, B is a boundary operator employed to enforce appropriate Dirichlet con-
ditions on CD;sup [ C D;sub-in [ CD;sub-out. For simplicity of presentation, we assume that BðuÞ ¼ u on CD;sup,
BðuÞ ¼ ðu1;u2;u3;0Þ> on CD;sub-in, and BðuÞ ¼ ð0;0;0; ðc� 1Þðu4 � ðu2

2 þ u2
3Þ=ð2u1ÞÞÞ> on CD;sub-out; we note that this latter

condition enforces a specific pressure pout ¼ ðBðgDÞÞ4 on CD;sub-out.
For solid wall boundaries, we consider isothermal and adiabatic conditions; to this end, decomposing CW ¼ Ciso [ Cadia, we

set
v ¼ 0 on CW; T ¼ Twall on Ciso; n � rT ¼ 0 on Cadia;
where Twall is a given wall temperature; see [8,10,15,17,19], and the references cited therein for further details.

3. DGFEM discretization of the compressible Navier–Stokes equations

In this section we propose a new discontinuous Galerkin method with interior penalty for the discretization of the com-
pressible Navier–Stokes equations (1). This is based on two key modifications of the original scheme developed in [27]: (i)
Implementation of an adjoint consistent formulation of the numerical fluxes on the boundary of the computational domain,
cf. [34,25]; (ii) Modification of the interior penalty parameter, which is very much inspired by the definition of the penalty
term involving a suitable lifting operator present in the second scheme proposed by Bassi and Rebay [12,13].

First, we begin by introducing some notation. We assume that X can be subdivided into shape-regular meshes Th ¼ fjg
consisting of quadrilateral elements j. For each j 2Th, we denote by nj the unit outward normal vector to the boundary oj,
and by hj the elemental diameter. Moreover, h denotes the piecewise constant mesh function defined by hjj � hj ¼ diamðjÞ
for all j 2Th. We assume that each j 2Th is an image of a fixed reference element ĵ, that is, j ¼ rjðĵÞ for all j 2Th,
where ĵ is the open unit square in R2 and rj is a smooth bijective mapping. For elements in the interior of the domain,
namely oj \ C ¼ ;, the mapping rj is bilinear; in order to represent curved boundaries in an accurate manner for boundary
elements, i.e., oj \ C 6¼ ;, the mapping rj is constructed based on employing a higher-order polynomial representation of
the computational boundary, see [24,31,37], for example.

On the reference element ĵ we define the space of tensor product polynomials of degree p P 0 as follows:
QpðĵÞ ¼ span x̂a : 0 6 ai 6 p;1 6 i 6 2f g;
where a denotes a multi-index and x̂a ¼
Q2

i¼1x̂ai
i . Finally, we introduce the finite element spaces Vp

h and Rp
h consisting of dis-

continuous vector-valued and tensor-valued, respectively, tensor product polynomial functions of degree p P 0, defined by
Vp
h ¼ fvh 2 L2ðXÞ½ �4 : vhjj � rj 2 QpðĵÞ

� �4
;j 2Thg;

Rp
h ¼ fsh 2 L2ðXÞ½ �4�2 : shjj � rj 2 QpðĵÞ

� �4�2
;j 2Thg;
respectively.
An interior edge of Th is the (non-empty) one-dimensional interior of ojþ \ oj�, where jþ and j� are two adjacent ele-

ments of Th. Similarly, a boundary edge of Th is the (non-empty) one-dimensional interior of oj \ C which consists of entire
edges of oj. We denote by CI the union of all interior edges of Th. Suppose that vjj 2 ½H

1ðjÞ�4 for each j 2Th. Let jþ and j�
be two adjacent elements of Th and x an arbitrary point on the interior edge e ¼ ojþ \ oj� � CI. By v	j we denote the traces
Fig. 1. Definition of the interior and exterior traces v	j with respect to element jþ .
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of v taken from within the interior of j	, respectively, see Fig. 1. Traces of matrix-valued functions s are defined in an anal-
ogous manner. Since below it will always be clear from the context which element j in the subdivision Th the quantities vþj
and v�j correspond to, for the sake of notational simplicity, we shall suppress the letter j in the subscript and write, respec-
tively, vþ and v�, instead.

We now define average and jump operators for vector- and matrix-valued functions. To this end, we again write jþ and
j� to denote two adjacent elements of Th and x an arbitrary point on the interior edge e ¼ ojþ \ oj� � CI. Moreover, let v
and s be vector- and matrix-valued functions, respectively, that are smooth inside each element j	. Then, we define the
averages at x 2 e by ffvgg ¼ ðvþ þ v�Þ=2 and ffsgg ¼ ðsþ þ s�Þ=2, respectively. Similarly, the jump at x 2 e is given by
svt ¼ vþ 
 njþ þ v� 
 nj� . On a boundary edge e � C, we set ffvgg ¼ v, ffsgg ¼ s and svt ¼ v
 n, where n denotes the unit
outward normal vector to the boundary C. For matrices r; s 2 Rm�n, m; n P 1, we use the standard notation
r : s ¼

Pm
k¼1

Pn
l¼1 rklskl; additionally, for vectors v 2 Rm;w 2 Rn, the matrix v
w 2 Rm�n is defined by ðv
wÞkl ¼ vk wl.

The discontinuous Galerkin discretization of the compressible Navier–Stokes equations (1) is given by: find uh 2 Vp
h such

that
Nðuh;vÞ � �
Z

X
FcðuhÞ : rhvdxþ

X
j2Th

Z
ojnC

Hðuþh ;u�h ;nþÞ � vþdsþ
Z

X
Fvðuh;rhuhÞ

: rhvdx�
Z

CI

ffFvðuh;rhuhÞgg : svtds�
Z

CI

ffG>ðuhÞrhvgg : suhtdsþ
Z

CI

dðuhÞ : svtdsþNCðuh; vÞ

¼ 0 ð3Þ
for all v in Vp
h. The subscript h on the operator rh is used to denote the broken gradient operator r, defined elementwise.

Here, Hð�; �; �Þ denotes the (convective) numerical flux function; this may be chosen to be any two-point monotone Lipschitz
function which satisfies the following two conditions:

(i) Hð�; �; �Þjoj is consistent with the flux Fcð�Þ � n for each j in Th, i.e.,
Hðv;v;nÞjoj ¼FcðvÞ � n 8j 2Th;
(ii) Hð�; �; �Þ is conservative, i.e., given any two neighboring elements jþ and j� from the finite element partition Th, at
each point x 2 ojþ \ oj� 6¼ ;, noting that nj� ¼ �njþ , we have
Hðv;w;njþ Þ ¼ �Hðw; v;�njþ Þ:
For the purposes of the numerical experiments presented in Section 5, we employ the Vijayasundaram flux. In this case,
Hð�; �; �Þ is defined by
Hðuþh ;u�h ;njÞjoj ¼Aþðûh;njÞuþh þA�ðûh;njÞu�h for j 2Th;
where Aþðûh;njÞ and A�ðûh;njÞ denote the positive and negative parts of the Jacobi matrix Aðûh;njÞ, respectively, eval-
uated at some average state ûh between uþh and u�h . Here,
Aðuh;njÞ ¼Fc
uðuhÞ � nj �

X2

i¼1

AiðuhÞðnjÞi;
where Ai, i ¼ 1;2, are the Jacobi matrices of the fluxes fc
i , respectively, cf. [32,38].

For an interior edge e 2 CI the penalization function dð�Þ arising in the DGFEM (3) may be defined in a number of ways.
For our newly proposed interior penalty DGFEM, we denote dð�Þ by dSIPGð�Þ, since this represents a generalization of the sym-
metric interior penalty method developed for linear diffusion problems, cf. [1], and the references cited therein. Indeed, on
this basis we shall use the short-hand notation SIPG to refer to this scheme. In Section 5 computational comparisons between
our newly proposed SIPG scheme and, what we shall subsequently refer to as the standard interior penalty method proposed
in [27], as well as the second DGFEM proposed by Bassi and Rebay (see Remark 3.2 for further details) will be undertaken; in
the sequel we shall refer to these two latter schemes as STSIPG and BR2, respectively. Thereby, we shall also introduce the
corresponding penalty functions dSTSIPGð�Þ and dBR2ð�Þ, respectively. With this notation we write
dðuhÞ �
dSIPGðuhÞ ¼ CIP

p2

he
ffGðuhÞggsuht; for theðnewÞSIPG scheme;

dSTSIPGðuhÞ ¼ CIPl p2

he
suht; for the STSIPG scheme;

dBR2ðuhÞ ¼ CBR2ffLe
0ðuhÞgg; for the BR2 scheme;

8>><>>:

where CIP and CBR2 are positive constants. For reasons of stability, CIP must be chosen sufficiently large. Similarly, CBR2 must
be chosen to be at least as large as the total number of edges a given element possesses, i.e., in the case of quadrilateral
meshes, CBR2 P 4. We remark that this theoretical minimum is based on the analysis of Poisson’s equation, though such a
requirement is also likely to be necessary for more complex problems. The local mesh size he, defined by
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he ¼minðmeasðjþÞ;measðj�ÞÞ=measðeÞ;
represents the element dimension orthogonal to the edge e ¼ ojþ \ oj�, cf. [20]. Here, we point out that the BR2 scheme
requires, for every edge e 2 CI, the computation of the local lifting Le

0ðuhÞ 2 Rp
h which is defined by
Z

X
Le

0ðuhÞ : sdx ¼
Z

e
suht : ffG>ðuhÞsggds 8s 2 Rp

h:
Note, that the support of Le
0ðuhÞ is Xe ¼ jþe [ j�e with e ¼ ojþe \ oj�e 6¼ ;.

Finally, it remains to define the boundary terms present in the semilinear form NCðuh; vÞ. To this end, we define
NCðuh; vÞ ¼
Z

C
HCðuþh ;uCðuþh Þ;n

þÞ � vþ dsþ
Z

C
dCðuþh Þ

: v
 nds�
Z

C
n �cFvðuCðuþh Þ;rhuþh Þ vþ ds�

Z
C

bG>ðuCðuþh ÞÞrhvþh
� �

: uþh � uCðuþh Þ
� 	


 nds: ð4Þ
Here, the viscous fluxes cFvðu;ruÞ are defined as follows
cFvðu;ruÞ ¼
Fvðu;ruÞ on C n Cadia;

Fv;adiaðu;ruÞ on Cadia;




where Fv;adiaðu;ruÞ is defined so that
Fv;adiaðu;ruÞ � n ¼ ð0; s1jnxj
; s2jnxj

; sijvjnxi
Þ>;
thereby, enforcing the adiabatic solid wall boundary condition n � rT ¼ 0 on Cadia. Here, the summation convention has been
assumed, where n ¼ ðnx1 ;nx2 Þ

>. Furthermore, the corresponding homogeneity tensor bG is defined so thatcFvðu;ruÞ ¼ bGðuÞru.
On the boundary of the computational domain the penalization function dCð�Þ is defined as follows
dCðuhÞ �
dSIPG

C ðuhÞ ¼ CIP
p2

he
bGðuCðuþh ÞÞ uh � uCðuhÞð Þ 
 n;

dSTSIPG
C ðuhÞ ¼ CIPl p2

he
uh � uCðuhÞð Þ 
 n;

dBR2
C ðuhÞ ¼ CBR2Le

CðuhÞ;

8>><>>:

for the (new) SIPG, STSIPG, and BR2 schemes, respectively. For a boundary edge e � C the local lifting operator Le

CðuhÞ 2 Rp
h is

defined by:
Z
X

Le
CðuhÞ : sdx ¼

Z
e

uh � uCðuhÞð Þ 
 n : bG>ðuCðuhÞÞs
� �

ds 8s 2 Rp
h:
Here, note that the support of Le
CðuhÞ is je, where je is the element in Th such that oje \ C ¼ e.

The convective numerical flux function HCð�; �; �Þ is defined as follows
HCðuþh ;uCðuþh Þ;nÞ ¼ n �FcðuCðuþh ÞÞ: ð5Þ
Finally, the boundary function uCðuÞ is given according to the type of boundary condition imposed. To this end, we set
uCðuÞ ¼ gD on CD;sup, uCðuÞ ¼ ððgDÞ1; ðgDÞ2; ðgDÞ3;

pðuÞ
c�1 þ ððgDÞ

2
2 þ ðgDÞ

2
3Þ=ð2ðgDÞ1ÞÞ

> on CD;sub-in, and uCðuÞ ¼ ðu1;u2;u3;
pout
c�1þ

ðu2
2 þ u2

3Þ=ð2u1ÞÞ> on CD;sub-out: Here, p � pðuÞ denotes the pressure evaluated using the equation of state (2). On Ciso, we
set uCðuÞ ¼ ðu1; 0;0;u1cvTwallÞ>, while uCðuÞ ¼ ðu1;0;0;u4Þ> on Cadia.

Remark 3.1. We note that the non-symmetric variant of the interior penalty method, which we will subsequently refer to as
the NIPG scheme, is obtained by changing the sign in front of the fifth and fourth terms arising in the semi-linear forms
Nð�; �Þ and NCð�; �Þ, respectively, defined, respectively, in (3) and (4).

Remark 3.2. We point out that the formulation of the second DGFEM proposed by Bassi and Rebay defined above is based on
exploiting the so-called flux-based formulation of the scheme which has been developed for laminar flows in the articles
[12,13]; this terminology is used to highlight the fact that the underlying lifting operator represents a contribution to the
viscous flux function. An alternative gradient-based formulation, where now the associated lifting operator represents a con-
tribution to the gradient of the conservative variables, may be defined by employing the following the penalty function on
interior edges
dBR20 ðuhÞ ¼ CBR2ffGðuhÞLe0
0 ðuhÞgg;
where, for every edge e 2 CI, the local lifting operator Le0
0 ðuhÞ 2 Rp

h is defined by
Z
X

Le0
0 ðuhÞ : sdx ¼

Z
e

suht : ffsggds 8s 2 Rp
h;
on boundary edges we write



9676 R. Hartmann, P. Houston / Journal of Computational Physics 227 (2008) 9670–9685
dBR20
C ðuhÞ ¼ CBR2

bGðuCðuhÞÞLe0
CðuhÞ;
where
Z
X

Le0
CðuhÞ : sdx ¼

Z
e

uh � uCðuhÞð Þ 
 n : sds 8s 2 Rp
h:
This latter gradient-based formulation has been exploited for turbulent compressible flows in the article [9]; see also [14] for
earlier work on this scheme. We point out, cf. Section 5 below, that for the numerical approximation of the laminar com-
pressible Navier–Stokes equations (1) both the flux-based and gradient-based schemes proposed by Bassi and Rebay are al-
most identical in terms of accuracy, however, the latter scheme is substantially more expensive, in terms of computational
effort, than the flux-based method. Thereby, in the sequel we shall primarily focus on making comparisons between the flux-
based scheme (BR2) and the SIPG and STSIPG methods.

Remark 3.3. We remark that for purposes of stability the constant CIP appearing in the definition of the interior penalty
terms must be chosen sufficiently large, cf. [1], for example. Computational experience indicates that a value of around
10–20 is sufficient to guarantee stability of the method, without being so large as to adversely affect the conditioning of
the resulting system of nonlinear equations. However, in terms of accuracy, the method is relatively insensitive to the mag-
nitude of CIP, provided that CIP is chosen large enough to guarantee stability.

Remark 3.4. As a final remark, we point that that a similar definition for the interior penalty terms for the newly proposed
SIPG scheme has also been considered in the recent article [35]. In that paper, the jumps in the numerical solution are scaled
by the homogeneity tensor G evaluated at the average of the numerical solution (the averaging being computed between the
two states of the solution on neighboring elements), rather than computing the average state of G on a given edge as pro-
posed here. However, the scheme developed in [35] does not impose the boundary conditions in an adjoint consistent man-
ner which is essential for optimality.
4. Consistency and adjoint consistency

In the context of duality-based error estimation, one of the key ingredients needed to ensure that the underlying numer-
ical approximation converges optimally, as the computational mesh is refined, is the so-called adjoint consistency property of
the discretization scheme employed (assuming, of course, sufficient regularity of both the underlying primal and dual prob-
lems). In the context of DGFEM approximations to Poisson’s equation, adjoint consistency has been investigated in [1] for a
wide variety of commonly used DGFEMs; see also [22] for related work developed in the context of functional error estima-
tion. The extension of these ideas to DGFEM approximations of compressible fluid flows has been considered in the articles
[34,25]. As noted in Section 1, in the context of target functional error estimation, adjoint consistency of the underlying
scheme must also be accompanied by an adjoint consistent reformulation of the underlying target functional of practical
interest, cf. [22,34,25]. Indeed, as we shall see in Section 5.2, the accuracy of the underlying scheme may seriously deterio-
rate if the underlying target functional considered is not reformulated in a suitable manner. However, we remark that this
reformulation of the target functional is not essential in all cases, cf. Section 5.1, where the weighted mean-value of the den-
sity is considered.

The purpose of this section is to demonstrate that the new SIPG scheme proposed in the previous section is adjoint con-
sistent. Here, the analysis will be pursued in the context of estimating the general target functional
JðuÞ ¼ JXðuÞ þ JCðuÞ; ð6Þ
where
JXðuÞ ¼
Z

X
u � wX dx
and
JCðuÞ ¼
Z

C
ðp n� s nÞ � wC ds: ð7Þ
Here, wX 2 ½L
2ðXÞ�4 and wC 2 ½L

2ðCÞ�2 are given weighting functions defined on the interior and boundary of X, respectively.
We remark that JXð�Þ represents the weighted mean-value functional, while the boundary functional JCð�Þ is of vital impor-
tance in the context of aerodynamic flows. Indeed, in this latter case, setting
wC ¼
1

C1
w on CW ;

0 otherwise;

(
ð8Þ
where w is given by wd ¼ ðcosðaÞ; sinðaÞÞ> or wl ¼ ð� sinðaÞ; cosðaÞÞ>, JCð�Þ defines the drag and lift coefficient, respectively, of
a body immersed in a viscous fluid with inlet flow at the angle of attack a. Here, C1 ¼ 1

2 cp1M2
1

�l ¼ 1
2 c jv1j

2

c2
1

p1�l ¼ 1
2 q1jv1j

2�l,
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where M1 denotes the Mach number at free-stream conditions, c1 is the free-stream speed of sound defined by
c2
1 ¼ cp1=q1, where p1 and q1 denote the freestream pressure and density, respectively, and�l denotes the reference (chord)

length of the body.
Following [25], we note that the continuous adjoint equations to (1) are given by
� Fc
u �Fv

u

� 	>rz�r � Fv
ru

� 	>rz
� �

¼ wX0 : ð9Þ
subject to the boundary conditions on CW ¼ Ciso [ Cadia,
n � Fc
u �Fv

u

� 	� 	>zþ n � Fv
ru

� 	>rz
� �

¼ 1
C1

pu n� su nð Þ � w; ð10Þ

n �Fv
ru

� 	>z ¼ 1
C1

sru nð Þ � w; ð11Þ
see [25]. At wall boundaries CW where v ¼ ðv1; v2Þ> ¼ 0, the normal viscous flux reduces to
n �Fvðu;ruÞ ¼ ð0; ðsnÞ1; ðsnÞ2;n � rTÞ>. Thereby, cf. [25], the continuous adjoint boundary conditions of the adjoint prob-
lem (9) to the compressible Navier–Stokes equations are given by
z2 ¼
1

C1
w1; z3 ¼

1
C1

w2 on CW ; z4 ¼ 0 on Ciso; n � rz4 ¼ 0 on Cadia: ð12Þ
We begin by first demonstrating that the proposed SIPG scheme is consistent. To this end, by employing integration by parts
in (3) we obtain the primal residual form given by, cf. [25]: find uh 2 Vp

h such that
Z
X

RðuhÞ � vdxþ
X
j2Th

Z
ojnC

rðuhÞ � vþ þ qðuhÞ : rvþ
� �

dsþ
Z

C
rCðuhÞ � vþ þ qCðuhÞ : rvþ
� �

ds ¼ 0 8v 2 Vp
h: ð13Þ
Here, the primal residuals are given by
RðuhÞjj ¼ �r �FcðuhÞ þ r �Fvðuh;rhuhÞ;

rðuhÞjojnC ¼ n �Fcðuþh Þ �Hðuþh ;u�h ;nþÞ �
1
2

sFvðuh;rhuhÞt� n � dðuhÞ;

qðuhÞjojnC ¼
1
2

GðuhÞsuht
� �>

;

rCðuhÞjoj\C ¼ n � Fcðuþh Þ �FcðuCðuþh ÞÞ �Fvðuþh ;ruþh Þ þcFvðuCðuþh Þ;ruþh Þ
� �

� n � dCðuhÞ;

qCðuhÞjoj\C ¼ G>ðuCðuþh ÞÞ : uþh � uCðuþh Þ
� 	


 n
� 	>

;

for j 2Th. Exploiting the consistency of the (convective) numerical flux function Hð�; �; �Þ, namely, Hðu;u;nÞ ¼ n �FcðuÞ,
the consistency of the boundary function, i.e., uCðuÞ ¼ u on C and hence dðuÞ ¼ dCðuÞ ¼ 0, assuming the analytical solution
u to (1) is sufficiently smooth (u 2 ½H2ðXÞ�4, for example), we deduce that
RðuÞ ¼ 0; rðuÞ ¼ 0; qðuÞ ¼ 0; rCðuÞ ¼ 0; qCðuÞ ¼ 0:
Thereby, we deduce that the proposed SIPG discretization given in (3) and (4) is consistent.
We now proceed to demonstrate the adjoint consistency of the SIPG scheme (3). To this end, the target functional JCð�Þ

defined on the boundary C of the computational domain X must be replaced by the following modified version, cf. [25]:
eJCðuhÞ ¼ JCðuCðuhÞÞ þ
Z

C
dCðuhÞ : zC 
 nds; ð14Þ
where
zC ¼
1

C1
ð0;w1;w2;0Þ

>
;

represents the boundary values of the adjoint solution z. Noting that dCðuÞ ¼ 0 holds for the analytical solution u, assuming u
is sufficiently regular, we have eJCðuÞ ¼ JCðuÞ, i.e., eJCð�Þ in (14) is a consistent modification of JCð�Þ.

Rewriting Nðuh; vÞ in (3) in terms of the homogeneity tensor G, recalling (4) and using integration by parts, we see that
the discrete adjoint problem: find zh 2 Vp

h such that
N0½uh�ðw; zhÞ ¼ eJ 0½uh�ðwÞ 8w 2 Vp
h; ð15Þ
can be given in adjoint residual form as follows, see [25]: find zh 2 Vp
h such that
Z

X
w � R�½uh�ðzhÞdxþ

X
j2Th

Z
ojnC

w � r�½uh�ðzhÞ þ rw : q�½uh�ðzhÞ
� �

dsþ
Z

C
w � r�C½uh�ðzhÞ þ rw : q�C½uh�ðzhÞ
� �

ds

¼ 0 8w 2 Vp
h: ð16Þ
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Here, the adjoint residuals are given by
R�½uh�ðzhÞjj ¼ Fc
uðuhÞ � G0½uh�ruh

� 	>rhzh þrh � G>ðuhÞrhzh

� 	
;

r�½uh�ðzhÞjojnC ¼ � H0
uþ ðuþh ;u

�
h ;n

þÞ
� 	>

szht � n�
1
2

sG>ðuhÞrzht� d0½uh�ð Þ>szhtþ
1
2

G0½uh�ruh

� 	>
szht

þ 1
2

G0½uh�suht
� �>

rhzh;

q�½uh�ðzhÞjojnC ¼
1
2

G>½uh�szht;
for j 2Th. Recalling that Fv
u ¼ G0½u�ru and Fv

ru ¼ GðuÞwe see that the analytical solution z to the continuous adjoint prob-
lem (9) satisfies R�½u�ðzÞ ¼ 0. Furthermore, the adjoint solution z satisfies r�½u�ðzÞ ¼ 0 and q�½u�ðzÞ ¼ 0. The adjoint boundary
residuals in (16) on CW are given by
r�C½uh�ðzhÞ ¼
1

C1
pu n� su nð Þ � w� n � Fc

uðuCðuhÞÞ �cFv
uðuCðuhÞ;ruhÞ

� �� �>zhn
� bG>ðuCðuhÞÞrzh

� �
;

q�C½uh�ðzhÞ ¼ �
1

C1
srunð Þ � wþ n �cFv

ruðuCðuhÞ;ruhÞ
� �>

zh:
Recalling (10) and (11) we see that the analytical solutions u and z to the primal problem (1) and the continuous adjoint
problem (9)–(12), respectively, satisfy r�C½u�ðzÞ ¼ 0 and q�C½u�ðzÞ ¼ 0.

Thereby, in summary we conclude that the proposed SIPG scheme defined in (3) is adjoint consistent with respect to the
general target functional eJð�Þwhich is defined in a similar manner to Jð�Þ in (6) with the boundary functional JCð�Þ replaced byeJCð�Þ, cf. (14).

Remark 4.1. We point out that the NIPG variant of the proposed DGFEM, cf. Remark (3.1), is not adjoint consistent, cf. [25].
As we shall see in Section 5 the lack of adjoint consistency of the NIPG method leads to a loss of accuracy when the error is
measured in terms of both the L2ðXÞ-norm, as well as in terms of the given target functional Jð�Þ; analogous behavior is also
observed in the context of linear advection–diffusion problems in the article [23].

Remark 4.2. We remark that although the STSIPG scheme, cf. above, has been shown to be adjoint consistent in the article
[25], the penalty terms present in the method penalize all components of the system in an equal manner, which computa-
tionally leads to a loss in accuracy. The newly proposed SIPG scheme weights the jump terms in a ‘natural’ fashion by scaling
them according to the size of the homogeneity tensor G. In this way, we shall observe computationally in the next section
that the resulting scheme converges optimally under mesh refinement when the error is measured in terms of both the
L2-norm, as well as for certain target functionals.
5. Numerical results

In this section we present a series of numerical experiments to highlight the practical performance of the interior penalty
DGFEM introduced in this article for the numerical approximation of the compressible Navier–Stokes equations.

5.1. Example 1: flow in a square domain

In this first example, we consider a simple model problem in order to examine the experimental order of convergence of
the proposed interior penalty DGFEM. To this end, we let X ¼ ð0;pÞ2, and supplement the compressible Navier–Stokes equa-
tions (1) with an inhomogeneous forcing function f, which is chosen so that the analytical solution to (1) is given by
u ¼ ðsinð2ðxþ yÞÞ þ 4; sinð2ðxþ yÞÞ=5þ 4; sinð2ðxþ yÞÞ=5þ 4; ðsinð2ðxþ yÞÞ þ 4Þ2Þ>;
where the dynamic viscosity coefficient l has been set to 1=10. This represents a modification of the (unsteady) test problem
employed in the article [36]. In this section we shall be interested in measuring the discretization error in terms of both the
L2ðXÞ-norm, denoted by k � k0, as well as in terms of a given target functional Jð�Þ. In the latter case, we consider the weighted
mean-value of the density, i.e.,
JðuÞ � JXðuÞ ¼
Z

X
u1wdx;
where w ¼ sinðpxÞ sinðpyÞ; thereby, the true value of the functional is given by JðuÞ ¼ 1:168587648689877.
In Fig. 2(a) we present a comparison of the error in the L2ðXÞ-norm with the (square root of the) number of elements

for p ¼ 1;2;3;4, employing both the SIPG method with CIP ¼ 10 and the (flux-based) Bassi–Rebay method (BR2) with
CBR2 ¼ 4. In both cases, we observe that ku� uhk0 converges to zero at the expected optimal rate Oðhpþ1Þ as the mesh
is refined for each fixed p. Moreover, from Fig. 2(b) we observe that the error in the computed target functional Jð�Þ be-
haves (approximately) like Oðh2pÞ, for each fixed p, as the mesh is uniformly refined for both of the discretization schemes
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Fig. 2. Example 1. Comparison of the SIPG and BR2 methods when the error is measured in terms of: (a) L2ðXÞ-norm; (b) Weighted mean-value functional
Jð�Þ.
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considered. These rates of convergence for both the L2ðXÞ-norm of the error and the error in the computed target func-
tional Jð�Þ are in complete agreement with the corresponding convergence behavior we would expect for the SIPG and
BR2 methods when applied to a linear convection–diffusion problem; see [23], for example, for the analysis of general
interior penalty DGFEMs for second-order partial differential equations with non-negative characteristic form. We remark
that in terms of accuracy, for a given number of elements, or equivalently, for a fixed number of degrees of freedom, both
the newly proposed SIPG scheme and the BR2 method perform in a comparable manner, with the latter scheme being, in
general, slightly more accurate. However, in terms of computational resources, the time required to assemble the residual
vector of the BR2 method, which is the most computationally intensive part of the flow solver, when explicit time-step-
ping schemes are employed, is significantly more expensive than the computation of the corresponding quantity when
the SIPG scheme is employed. More precisely, for (bi)-linear, elements, i.e., p ¼ 1, the BR2 method is around 38% more
expensive than the SIPG scheme; this overhead increases as the underlying polynomial degree is enriched. Indeed, for
p ¼ 2, the BR2 method is approximately 47% more expensive, and for p ¼ 3 and p ¼ 4 the additional work rises to around
55%. This increase in the cpu times when the BR2 method is employed is attributed to the computation of the lifting
operator on each face of the computational mesh. We point that the gradient-based formulation of the BR2 method,
cf. Remark 3.2, is almost identical in terms of accuracy when compared to the flux-based formulation employed here,
however, this former scheme is significantly less efficient in terms of computational effort. Indeed, comparing with SIPG
scheme, the computation of the residual vector of the gradient-based BR2 method is around 78% more expensive than
the SIPG method for p ¼ 1; for p ¼ 2, this overhead increases to 86%, for p ¼ 3, it is approximately 107% more expensive,
and for p ¼ 4, the additional work rises to around 115%.

Finally, in this section we compare the performance of the proposed SIPG method with both the corresponding NIPG for-
mulation of the underlying scheme (cf. Remark 3.1), together with the interior penalty method outlined in our previous arti-
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cle [27]; as in Section 3, we shall refer to this latter scheme as the standard SIPG (STSIPG) method. To this end, in Fig. 3 we
plot the L2ðXÞ-norm of the error against the (square root of the) number of elements for p ¼ 1;2;3;4 using each of the above
schemes. In contrast to the SIPG and BR2 methods, we now observe that ku� uhk0 behaves like Oðhpþ1Þ for odd p and like
OðhpÞ for even p when either the NIPG method or the STSIPG scheme are employed. The sub-optimal convergence observed
when employing these two schemes is attributed to the lack of smoothness in the resulting dual problems, cf. [23]. More-
over, the same behavior is also observed in the functional setting; indeed, for the NIPG scheme, from Fig. 4 we see that
jJðuÞ � JðuhÞj tends to zero at (approximately) the rate Oðhpþ1Þ for odd p and OðhpÞ for even p, as the mesh is uniform refined.
Analogous behavior is also observed when the error in the computed target functional Jð�Þ is evaluated using the STSIPG
method; for brevity, these numerics have been omitted.

5.2. Example 2: Mach 0.5 flow at Re ¼ 5000 and a = 0� around a NACA0012

In this example, we consider the subsonic viscous flow around a NACA0012 airfoil; here, the upper and lower surfaces of
the airfoil geometry are specified by the function g	, respectively, where
g	ðsÞ ¼ 	5� 0:12� ð0:2969s1=2 � 0:126s� 0:3516s2 þ 0:2843s3 � 0:1015s4Þ:
As the chord length l of the airfoil is l � 1:00893 we use a rescaling of g in order to yield an airfoil of unit (chord) length. The
computational domain X is subdivided into quadrilateral elements. Curved boundaries are approximated by piecewise qua-
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dratic polynomials. At the farfield (inflow) boundary we specify a Mach 0.5 flow at a zero angle of attack, i.e. a = 0�, with
Reynolds number Re ¼ 5000; on the walls of the airfoil geometry, we impose a zero heat flux (adiabatic) no-slip boundary
condition. This is a standard laminar test case which has been investigated by many other authors, cf. [10,27], for example.
The solution to this problem consists of a strictly subsonic flow which is symmetric about the x-axis.

Here, we consider the estimation of the drag coefficient cd; i.e., the target functional of interest is given by
Fig. 5.
reformu
JðuÞ � JCðuÞ ¼
Z

C
p n� s nð Þ � wC ds;
where
wC ¼
1

C1
wd on CW ;

0 otherwise;

(

and wd ¼ ðcosðaÞ; sinðaÞÞ>, cf. (7) and (8). We remark that the adjoint consistency of the proposed SIPG scheme is based
on the consistent reformulation of Jð�Þ defined in (14). With this in mind, in Fig. 5(a) we present a comparison of the
error in the computed target functional with the (square root of the) number of elements for p ¼ 1;2;3, employing both
the SIPG method with CIP ¼ 10 and the (flux-based) Bassi–Rebay method (BR2) with CBR2 ¼ 4. In both cases, we observe
that, asymptotically, at least, jJðuÞ �eJðuhÞj converges to zero at the expected optimal rate Oðh2pÞ as the mesh is refined for
each fixed p, cf. Section 5.1 above. Moreover, as before, we note that in terms of accuracy, for a given number of ele-
ments, or equivalently, for a fixed number of degrees of freedom, both the newly proposed SIPG scheme and the BR2
method perform in a comparable manner, though as already noted, the SIPG scheme requires less computational effort
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Example 2. Comparison of the SIPG and BR2 methods employing: (a) adjoint consistent reformulation of the drag functional; (b) adjoint consistent
lation of the drag functional excluding the penalty terms.
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to attain the computed solution. As in the previous example, we note that the gradient-based formulation of the BR2
method is almost identical in terms of accuracy when compared to the flux-based formulation employed here; though,
again it is significantly less efficient in terms of computational effort. To highlight the necessity of the consistent refor-
mulation of the original target functional Jð�Þ through the additional of the term involving the penalty function dCð�Þ, cf.
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Fig. 6. Example 2. Comparison of the SIPG, NIPG, and STSIPG methods: (a) p ¼ 1; (b) p ¼ 2; (c) p ¼ 3.



Table 1
Example 3: Adaptive algorithm for the numerical approximation of cd

Elements DoF JðuÞ �eJðuhÞ
P

j2Th
ĝj h

400 6400 1.179e�02 1.385e�02 1.17
655 10,480 �1.345e�03 �2.113e�03 1.57
1096 17,536 �8.976e�04 �7.871e�04 0.88
1795 28,720 �4.282e�04 �3.803e�04 0.89
3028 48,448 �2.422e�04 �2.275e�04 0.94
5155 82,480 �1.152e�04 �1.104e�04 0.96
8653 138,448 �5.481e�05 �4.781e�05 0.87
14,584 233,344 �3.484e�05 �3.458e�05 0.99

Table 2
Example 3: Adaptive algorithm for the numerical approximation of cl

Elements DoF JðuÞ �eJðuhÞ
P

j2Th
ĝj h

400 6400 �1.175e�01 �5.867e�02 0.50
658 10,528 6.548e�03 6.841e�03 1.04
1108 17,728 �1.292e�03 �1.159e�03 0.90
1861 29,776 �1.784e�03 �1.891e�03 1.06
3118 49,888 �1.239e�03 �1.266e�03 1.02
5236 83,776 �6.504e�04 �6.704e�04 1.03
8746 139,936 �2.623e�04 �2.622e�04 1.00
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(14) for the definition of eJCð�Þ, in Fig. 5(b) we present a comparison of jJðuÞ � JðuCðuhÞÞj with the (square root of the)
number of elements for p ¼ 1;2;3 employing both the SIPG and BR2 schemes. In this case, we now observe that there
is a significant deterioration of the error for a given mesh size and polynomial order when compared to the correspond-
ing results when the penalty function modification of the target functional has been included. Indeed, comparing Figs.
5(a) and (b), we see that the inclusion of the penalty function modification in the definition of eJð�Þ � eJCð�Þ leads to around
2–3 orders of magnitude improvement in the computed error in the drag.

Finally, in Fig. 6 we present a comparison of the newly proposed SIPG method with both the NIPG and STSIPG schemes for
p ¼ 1;2;3. In this case, we see that for p ¼ 1 and p ¼ 2, the NIPG scheme is inferior to both the SIPG and STSIPG methods;
indeed, in this case, the error in the underlying target functional computed using the SIPG method is between 1 and 2 orders
of magnitude smaller than the corresponding quantity evaluated using the NIPG method. For p ¼ 1 we observe that the
STSIPG method is marginally more accurate than the SIPG method on the two finest meshes employed, though for p ¼ 2 this
method is inferior to the SIPG scheme. For p ¼ 3, the three methods lead to a very similar error in the computed drag coef-
ficient, for a given number of elements.
5.3. Example 3: Mach 0.5 flow at Re ¼ 5000 and a = 2� around a NACA0012

In this final example, we investigate the performance of the newly proposed SIPG method on a sequence of adaptively
refined meshes generated based on the goal-oriented dual-weighted-residual error indicators ĝj derived in [27]. We remark
that although the STSIPG scheme was employed in the article [27], the extension of the a posteriori error bound derived in
[27] to the application of the DGFEM developed within the current article follows in a similar fashion; for brevity, we omit
the details.

To this end, we consider a variant of the problem studied in the previous example. Indeed, here we consider the
subsonic viscous flow around a NACA0012 airfoil with inflow Mach number equal to 0.5, at an angle of attack a = 2�,
and Reynolds number Re ¼ 5000; on the walls of the airfoil geometry, we impose a zero heat flux (adiabatic) no-slip
boundary condition. In Tables 1 and 2 we demonstrate the performance of the adaptive algorithm for the numerical
approximation of the drag (cd) and lift (cl) coefficients, respectively. In each case, we show the number of elements
and degrees of freedom (DoF) in V1

h , the true error in the functional JðuÞ �eJðuhÞ, the computed error representation for-
mula

P
j2Th

ĝj, and the corresponding effectivity index h ¼
P

j2Th
ĝj=ðJðuÞ �eJðuhÞÞ. We see that even on the initial very

coarse meshes the quality of the computed error representation formula
P

j2Th
ĝj is relatively good, in the sense that h is

close to one; however, as the mesh is refined, we observe that the effectivity indices h improve by slowly tending to-
wards unity.

Finally, in Fig. 7 we show the meshes generated for both the approximation of the drag and lift coefficients after five
adaptive refinements, with 5155 and 5236 elements, respectively. As noted in [27], refinement is mainly concentrated
within in the vicinity of the airfoil, with the mesh generated for the computation of the lift coefficient being more
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Fig. 7. Example 3. Adaptively refined computational mesh generated for the accurate approximation of: (a) cd; (b) cl .
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concentrated around the airfoil, than the corresponding mesh generated for the accurate computation of the drag
coefficient.

6. Concluding remarks

In this article we have considered the formulation of a new symmetric version of the interior penalty method for the
numerical approximation of the compressible Navier–Stokes equations. Indeed, in the goal-oriented setting we have shown
that the new method is adjoint consistent with respect to certain target functionals of practical interest, based on exploiting
the analysis developed in the article [25]. Experimentally, the newly proposed scheme has been shown to yield optimal rates
of convergence, when the error is measured in terms of both the L2-norm, as well as for certain target functionals of the solu-
tion of practical interest. Future work will be devoted to the application of the scheme to both three-dimensional laminar
and turbulent flows.
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